The DKU Pattern for Performance Portable
Parallel Programming

SEAN HALLE ALBERT COHEN
UC Santa Cruz, INRIA,
Santa Cruz, Ca Saclay, France
Email: seanhalle@yahoo.com Email: albert.cohen@inria.fr
Abstract

The shift to an ever increasing number of cores on a chip is driving the need for parallel
programming methods that allow “single source, multiple hardware, high performance on
each”. The difficulty of designing such methods is exemplified in the embedded industry.
Here, the tradition is hand-coding for ultra-high performance on specialized architectures,
so the single source must be automatically transformed to give performance comparable to
hand-coding. However, it is desired that source have no knowledge of the MPSoC; it must
be written in a generic way, providing the information that an automated process will use
to make the program efficient on a particular chip. To achieve this, the programmer must
state, in essence, how to change the size of a scheduled unit of work so that automated
task-size tuning can take place.

We propose a programming pattern, for the case of data-parallelism, to help provide
that information, called DKU, which is short for “Divider-Kernel-Undivider”. In this con-
struct, the programmer writes three separate pieces of code: code that divides the iteration
space plus data-structure into pieces; code that computes the answer for one piece; and
code that puts the individual answers together into the larger answer. Because the pro-
grammer provides this code, the code can work with any data-structure, leaving the pro-
grammer free to choose structures natural to the problem.

DKU has been implemented as part of the Open Media Platform project where it is
added to Java and supported by a web infrastructure that specializes the single source to
multiple hardware platforms. A client device requests a program and automatically
receives the executable specialized to that client’s hardware.

1 Introduction

The DKU pattern is intended for performance portability of parallel code when exploiting data-
parallelism. The pattern can be added to any language and remain backwards compatible;
DKU-enabled applications run un-modified in the original language. The pattern specifies a
certain grouping of functionality and uses naming conventions to identify each function. In this
way, the functional aspects of parallel code are separated from performance aspects, and each
kind of code is clearly identified to the compiler.

Performance portability requires automation that modifies the source code to fit with hard-
ware characteristics. For example, high performance is achieved in different ways on a 4 core
shared-memory CPU, versus a distributed memory 7-core heterogeneous MPSoC, versus a 100-
core GPU. In each case, the source must be transformed to fit the hardware if its performance
is to compete with code written specifically for that hardware [9].

Because of the need to specialize to hardware, the compiler must be split into a front-end
used like a normal compiler, plus one or more additional back-ends that specialize. The desires
for single, generic, source and simultaneously high performance can only both be achieved by
separating source development from specialization, making them two steps, and automating the
second. The front-end is used to develop the source, while hardware specialization is automati-
cally performed when hardware knowledge becomes available. Hardware knowledge is gained
during download, during install, or during a run, in all of these cases, after and independently of
writing the source. Hence the separation of source development, using a front-end compiler, and
specialization, using some automated back-end tool.

2 SECTION 1

The back-end specializers have hardware knowledge built-in to them. They use the informa-
tion exposed by the DKU pattern to specialize to that hardware.

In our proof-of-concept implementation, specialization is performed inside web-based infras-
tructure. This is representative of a typical use case from the porting of media applications on
mobile consumer-electronics device [12]. This DKU web infrastructure automatically runs the
back-end specializers upon receipt of new source code. The benefit is automated decoupling of
source development from hardware specialization. Thus new specializers can be added long after
source code has been completed, allowing new parallel hardware to use “dusty deck’s.

The process of specialization is hidden from both source developers and end-users. The web
infrastructure receives all source, so the source devlopers only see one site that they send their
program to. The site generates specializations upon receipt. End-users also see the same site.
They request programs from that site (telling it the hardware they have). Behind the scenes,
the web infrastructure automatically chooses the specialized executable most appropriate for the
client hardware. Thus the specialization is hidden, only the provider of the web infrastructure
and the providers of the specializer back-ends are aware of the specialization taking place.

The question arises as to how convenient is to use a construct such as the DKU pattern.
The currently popular parallel programming solutions that give high performance on general
data structures already require the programmer to write some form of divider, kernel, and undi-
vider code, even though this decomposition may not be readily apparent. They also require the
application to include varying degrees of support code for exploiting the parallelism. The sup-
port code discovers machine characteristics, decides optimal data-piece sizes, coordinates the dis-
tribution of data-pieces and then re-combines results. The support code determines the amount
of parallelism delivered — but it doesn’t do any of the actual work. This code exists in current
parallel source even though the boundary between support code and the divider, kernel, and
undivider code is not always obvious.

The DKU pattern makes the boundary explicit between the divider, kernel, and undivider
code, and automates the support tasks. The support tasks are not functional, they only deter-
mine how much parallelism is exploited by the hardware, and thus the performance. The sup-
port behavior can safely change without changing the result. This allows taking the support
tasks out of the source code and placing them inside the “language”, where they are imple-
mented differently on each hardware. Thus, the same source code will behave differently on each
hardware platform; it will behave functionally the same on all hardware, but the parallelism
behavior will be different.

Hence, using the DKU pattern requires the same effort as other methods for the division,
kernel, and undivision code, but eliminates the effort spent on support-of-parallelism code.

In summary, the DKU pattern conveys the information needed by back-ends to specialize the
source to high performance versions. The needed information consists of: how to break a data-
structure into smaller pieces, how to break the iteration space into smaller pieces, how to per-
form the calculations within one piece of the iteration space, and how to put together the results
from the individual interation spaces. The DKU pattern does this whithout any information in
the source that would favor one kind of hardware over another. The information provided
enables the back-end specializers to re-size computation-pieces and map them onto hardware
resources in whatever way the specializer approaches this optimization problem. Finally, the
pattern isolates the application from communication protocol and synchronization mechanisms.

1.1 Background: the model of computation
This paper assumes a particular computation model:
e multiple processors;
e each processor atomically applies a code-snippet to data (an atomic-computation);

e cach processor communicates data with the other processors;

INTRODUCTION 3

e a scheduling decision takes place for each processor, for each atomic work-unit;
e scheduling an operation uses computation resources;

e communication consists of latency and bandwidth: latency has a hardware-dependent
function that states the distribution of latencies as a function of number of communica-
tions initiated per communication delivered; bandwidth delivered to a particular commu-
nication is a hardware dependent function of communication pattern; the pattern of
communications in progress during an interval sets the bandwidth delivered to a partic-
ular communication.

Given this model, performance depends on the atomic-computation size [9]. Too large an
atomic-computation size causes processors to sit idle waiting for large atomic-computations to
free up work. Too small an atomic-computation size consumes too much scheduling computa-
tion, causes too much routing congestion in most networks, and loses too much time to latency
of messages while the delivered bandwidth remains small. Also, if the computational com-
plexity is super-linear in data-size then the total communication volume consumed during the
solution of a problem increases as the message-size decreases. Below the point of perfect
overlap, communication becomes the bottleneck, slowing computation.

Atomic-computation size must be tuned to come close to the sweet spot. It can be tuned in
two ways [9)]:

e change total trace length performed on a given size of data;
e change the size of data a given code-snippet is applied to.

Changing trace length means changing one of: the size of the code-snippet; the complexity of the
code-snippet; or the number of iterations performed by the code-snippet. Meanwhile, changing
size of data in an atomic-computation requires knowledge of the data-structure, requires a kernel
that can compute on changed data-sizes, and requires knowledge of how to combine the results.

In data-parallelism, setting the amount of data paired with a kernel is equivalent to setting
the number of iterations the kernel has to do to consume the data. This is expressed in the
DKU pattern. However, DKU does not cover changing the trace-length by modifying the code-
snippet. Rather, DKU addresses changing the size of data in each atomic-computation, and
automates the choice-of-size, scheduling-onto-processors, and communications.

1.2 Existing solutions to parallel programming

Currently popular parallel programming solutions that allow working with general data struc-
tures include Skeletons [5], Streaming Languages [11], Object Oriented Language enhancements
like X10 [3] and Titanium [2], semi-automated language enhancements like Cilk [1], and libraries
like MPI [12]. In most practical examples, to extract parallelism from operations on general
data structures in the OO language and the semi-automatic language enhancements, the pro-
grammer must write some form of divider, kernel, and undivider code. The application must
also include support code for exploiting the parallelism: code that discovers machine characteris-
tics, decides optimal data-piece sizes, coordinates the distribution of data-pieces and then re-
combines results. The support code determines the amount of parallelism delivered — but it
doesn’t do any of the actual work. A subtle but important point is that the boundary between
support code and the divider, kernel, and undivider code in these languages is not always
obvious, but it is very important for performance portability.

The DKU pattern differs from these in two ways: it makes the boundary explicit between the
divider, kernel, and undivider code, and automates the support tasks. The support tasks are
not functional, they only determine how much parallelism is exploited by the hardware, and
thus the performance. Taking the support tasks out of the source code and placing them under-
neath the pattern allows them to be implemented differently on each hardware. Thus, the same
source code will behave differently on each hardware platform. It will behave functionally the
same on all hardware, but the parallelism behavior will be different.

4 SECTION 1

The DKU pattern has much in common with Skeletons used for parallel programming.
Skeletons are a popular paradigm for parallel programming. What qualifies as a Skeleton is a
bit vague, but in general, a Skeleton is considered an algorithmic pattern embedded as a higher
order function. The use of the pattern invokes some form of automation that simplifies parallel
programming or improve performance. DKU can be seen as a highly versatile Skeleton with
explicit control of the data bundling and scheduling decisions.

Most Skeletons for parallel programming can be arranged into two sub-categories. One cate-
gory has skeletons that are quite light-weight, imposing few restrictions on the programmer.
However, these also tend to provide relatively little help, providing most often some simple form
of fork/join parallelism. The other category has skeletons that provide more automation, such
as so-called meta-programming style skeletons [7][4]. However, these tend to restrict the form of
the code, and they have a relatively steep learning curve compared to the less restrictive forms.

A language extension called CAPSULE [10], is similar to DKU in that it also explicitly iden-
tifies a scheduler in the source code. As in DKU, the implementations of CAPSULE make this
scheduler’s behavior hardware-dependent. However, their approach focuses on control paral-
lelism (pipeline parallelism); the application tells the scheduler when there is an opportunity for
iteration-space division, often in recursive form. The hardware-dependent scheduler decides if it
will take that opportunity. Hence the behavior of the CAPSULE language is different on dif-
ferent hardware implementations. This contrasts to DKU, which has no active semantics, only
making semantic information available to a specializer. CAPSULE also has extensions to allow
division of data for a distributed chip. The semantics of CAPSULE are well suited to imple-
mentation with a run-time system (which may in turn be implemented as library calls). How-
ever, it is less clear how to extract semantics from CAPSULE code that can be used for back-
end specializations.

StarPU features a stream-oriented model of computation, yet does not involve any language
extension [13]. Based on multi-versionned kernels, it automates the dynamic balancing and map-
ping of tasks and data over heterogeneous, accelerator-centric parallel architectures. Much like
the scheduler component of the DKU patternm, the scheduling and feedback-directed work-
stealing algorithms in StarPU are highly customizable.

Sequoia [6] is a well known data parallel language exploiting the structure of data-centric
algorithms. It states data affinity to portions of iteration space. This, in essence, intermixes
portions of the scheduling process with encoding of dependencies, because stating dependency of
data upon a “sub-task” is equivalent to dividing work. Thus the language also has, like DKU,
an explicit concept of a divider. The language also exposes the scheduling process explicitly in
the source by making sub-task an explicit entity in the source. However, this choice of seman-
tics also forces partially implementing the scheduler in the source, which limits portability. To
manage portability, Sequoia includes explicit management of data assignment to memory hier-
archy levels, in the application code. For each hardware platform, the application programmer
must supply a mapping that takes the “abstract” hierarchy defined in the application, and
assigns pieces of it onto specific hardware. The language then provides some automation for
choosing which of the programmer-supplied “mapping”s it uses. This is similar to DKU’s
automation infrastructure, but is more of an intermediate level of separation. It requires more
effort from the application provider and requires them to learn the memory characteristics of
each hardware platform.

DKU does not have a mechanism for such an intermediate level of separation between source
and hardware. However, we plan future enhancements to the automated infrastructure that let
application programmers add commands that specific specializers understand. Some of these
commands will relate to managing work placement. Thus, the application programmer will
incrementally improve the performance of their code on chosen hardware, without affecting the
original source and without the possibility of introducing bugs.

DEescRIPTION 5

2 Description

piece struc

piece struc | Scheduler

A “Black Box” that implements the functions of a
scheduler. The exact behavior is hardware

Divider dependent.
icode that creates new piece strucs. Into * piece struc
reach new piece struc it places the bounds;
rof data and bounds of iterations. '
! Kernel

piece struc lpiece struc

Ecode that collects the results from each subpiece !
1and assembles them into an answer for the !
1parent piece struc. !

‘ piece struc

Figure 1. The flow of data through the elements of the DKU pattern

Figure 1 shows the basic structure of code written according to the DKU pattern. A data-
structure, representing one atom-ically completed piece of work to perform, flows into a sched-
uler. The scheduler decides how many pieces to divide that work into. It places its decision
into the data structure and hands it to the divider. The divider creates a number of identical
data-structures, one for each sub-piece. Into each, the divider places some programmer-defined
indication of the boundaries in iteration space (eg, FOR loop’s start and end values). This sets
the amount of work to do. The divider hands the pieces back to the scheduler. The scheduler
may then repeat the process, further sub-dividing each sub-piece (allowing the work-piece hier-
archy to be matched to the hardware hierarchy). When the scheduler is satisfied, it passes the
leaves of the piece-hierarchy along to the kernel.

This is where the parallelism comes in to play. Semantically, the kernel code is replicated
once for each piece struc. This is equivalent to each piece struc having its own processor per-
forming the kernel just on that one piece. The scheduler controls how many pieces get made,
and thus how many copies of the kernel are active at one time. The scheduler is implemented
differently on each hardware platform, designed to choose the number of pieces that fits well to
the number of processors available and to the network available.

Once the kernel completes on each piece struc, the piece is passed along to the undivider,
which combines the sub-pieces into an answer for their parent piece.

2.1 DKU pattern in the Object Oriented paradigm

Figure 2 represents both the call structure and the data structure when the DKU pattern is
implemented in an object oriented language.

6 SECTION 2

piece struc
~

—
—_—
—_—

performScheduling -~

piece strucwg» Divide

......
.............
........

p!
piece strucs-=- R
piece struc--

~ Undivide
%, ™ Undivide
“» Undivide

Figure 2. A representation of the call structure plus data structure for the DKU pattern implemented in an
OO paradigm. Solid lines represent data flow, coarse dashed lines represent pointers, medium dashed lines rep-
resent side effects, and fine dashed lines represent method calls invoked on an object. The thick line

below “performScheduling” demarcates the activity that takes place during the method call.

At the top of the figure is a piece struc. The coarse dashed line coming out of it indicates
that the piece struc has a pointer to the array seen at the right of the figure. The solid arrow
below the piece struc indicates that the struc is flowing into the performScheduling method.

A fine dashed line coming out of an object and pointing to a method name indicates a
method call invoked on that object. However, performScheduling has no fine dashed line
pointing to it because it is statically invoked.

The thick vertical line below performScheduling indicates all the activity that
occurs “during” the method call. The piece struc at the top of the thick vertical line is the piece
struc that flowed into the method-call. At the top, the first activity of the performScheduling
method is to invoke the Divide method on the piece struc. The solid arrow coming out of the
Divide method indicates the flow of return values coming from it. These return values are a
number of newly created piece strucs.

The next activity of the performScheduling method is to call the Kernel method on each
of those returned piece strucs. This causes the data to be transformed. The medium-dashed
line coming out of each Kernel method indicates that the Kernel has modified a portion of the
array by side-effect.

Upon completion of the Kernel method, each piece struc flows into the Undivide method.
The Undivide is invoked on the parent of the piece strucs. When all sub-pieces have completed
the Undivide, the performScheduling method is complete.

2.2 DKU pattern in Java

As a concrete example of the DKU pattern, consider the implementation of the DKU pattern in
Java illustrated in Figure 3. Here the class construct is used to define the data-structure that
represents one piece of work, which is called the MyPiece class. It implements the DKUPiece
interface, and has three methods:

1. divideSelfInto_SubPieces
2. performKernelOnSelf

3. unDivideASubPiece

DEescRrIPTION 7

A class that implements the DKUPiece interface:
public class MyPiece implements DKUPiece

{
ADataTypel] origArrayToBeProcessed;

int startingIterationValueForThisPiece;
int endingIlterationValueForThisPiece;

MyPiece[] subPiecesArray; //standardized name, holds children pieces

// Divider is called by the scheduler
public void divideSelfInto SubPieces(int numPieces)
{

for (newPiecePos = 0; newPiecePos < numPieces; newPiecePos += 1)

{

newPiece = new MyPiece(this); //constructor copies pointer to
// origArrayToBeProcessed
newPiece.startingIterationValueForThisPiece =
calcNewStart (newPiecePos); //the index into orig array at
// which new sub-piece starts
newPiece.endinglterationValueForThisPiece =
calcNewEnd (newPiecePos); //the index into orig array at
// which new sub-piece ends

subPiecesArray|[newPiecePos] = newPiece; //add new sub-piece to
} // children array

}

// Kernel is called by the scheduler
public void performKernelOnSelf ()
{

for(currIndex = startinglterationValueForThisPiece;
currlndex < endinglterationValueForThisPiece;
currIndex += 1)

aDatum = origArrayToBeProcessed[currlIndex];
doWorkOn (aDatum); //do the work on one elem of original array
// the result over-writes the original elem.

}

// Undivider is called by the scheduler
public boolean unDivideASubPiece (MyPiece aFinishedSubPiece)

{
incrementNumSubPiecesUndivided () ; //only have to keep track of
} // whether all sub-pieces are done

A code snippet that invokes the scheduler. This initiates the DKU activity.
scheduler.processDatalIn(myPiece); // invoke on top-level root piece

An implementation of the scheduler. This code is replaced by a specialized version that is
written for specific hardware. The hardware specific version creates worker threads,
implements communication between them, and synchronization. For single hardware thread

machines, this is left as-is.
public class Scheduler

{

public static void processDataln(DKUPiece rootPiece)

{

rootPiece.performKernelOnSelf () ;

}

Figure 3.

The divideSelfInto_SubPieces method uses the new keyword to create new sub-piece
objects which it places into an array. Although it is not shown in the figure, the DKU pattern
includes a standard iteration interface, so one can simply say “myPiece.nextSubPiece”. This
interface iterates through the sub pieces array.

8 SECTION 2

The data to be worked on is held in this example in an array. Each sub-piece is given a por-
tion of the array to work on. To divide up the work, each sub-piece is given a starting position
in the original array, and and ending position. The start and end indexes actually serve two
purposes: they mark boundaries in the data, and they also divide the iteration space of the
Kernel.

These two purposes are not always so cleanly met. Some uses of the DKU pattern must sep-
arately bound data and bound iteration sub-spaces. A good example is in searching a graph.
One strategy would be to start the search in the divider, but only go to a certain depth, then
save the position. The divider would place one saved position in each sub-piece. The kernel
would start from that saved position. In this case, the data is actually the same for all sub-
pieces, only the iteration space is different.

The performKernelOnSelf method performs the work. In the example code, it has a simple
FOR loop. The loop begins at the start-index that is saved in the sub-piece and continues until
the end-index saved in the sub-piece. At each index, it performs some work. The result is
saved in-place by overwriting the input value. Thus, the original matrix is updated in-place by
side-effect. If additional storage is needed for the result, it would be allocated inside the
divider, and pointed to in the sub-piece.

The unDivideASubPiece method is invoked on the parent piece object, and given one of the
sub-pieces created by the divideSelfInto_SubPieces previously called on that parent piece
object. In the example, the result has replaced the input, so the undivider has only the min-
imum work to do, which is tracking that all sub-pieces have completed.

To illustrate the undivider in the graph search example, the undivider would look at the
results from each piece, and check if any of them was successful in the search. This is how the
individual search results would get combined into a single over-all search result. Future work
might add iteration-control syntax that would allow the undivider to communicate with the
scheduler. This would allow all sub-pieces to be stopped once one of them found a match.

The Scheduler controls all actions; the only way for an application to make anything in a
DKU pattern take action is through the Scheduler class. This has some benefits; for example
it enables a very simple specialization technique in which the Scheduler class is simply replaced
by a hardware-specific version.

The pattern defines names that must be present in an instance of the DKU pattern. The
DKUPiece interface defines standard method names. In addition, many instance variables are
required to have standard names and uses, such as: subPiecesArray, numSubPieces, and
numSubPiecesFinished. Finally, there must always be a Scheduler class, which is the only
class that invokes any of the standard DKU methods (outside of the classes in the DKU pattern
itself).

Having fixed names enables a specializer to identify the DKU pattern within the source. A
specializer can perform more in-depth optimizations this way. For example, it could collapse
data-structures passed to the Kernel down onto a flat array, thereby enabling advanced opti-
mization techniques.

2.3 Specialization

What makes the DKU pattern interesting is the ability to automate back-end specializations.
Each specialization transforms the source and compiles down to efficient code for specific hard-
ware. Specialization can be performed for many classes of hardware, including shared memory
and distributed memory machines, and even for new generation GPUs.

The ability to run high performance across a variety of hardware platforms relies on the fact
that the behavior of the Pattern itself changes for each kind of hardware. It also relies upon the
semantic information the Pattern conveys.

The high performance is accomplished by extending the split-compilation model. In this
model, a front-end compiler performs all syntactic and grammatic checks, and accumulates all
libraries and linked code. Meanwhile, a back-end compiler, or “specializer” transforms the code
to be efficient on particular hardware. The source developer uses the front-end compiler, while
some other entity performs the specialization.

DEescRIPTION 9

Each specializer is written for one specific hardware platform, and uses techniques that
enhance performance on that kind of hardware. For example, for GPUs, a custom Scheduler
class is written that performs the division on the host processor. The custom scheduler includes
the code that controls the GPU hardware, loading it with the Kernal and pointing it to the
array of piece data-structures.

The specializer we wrote for our proof of concept implementation includes a Scheduler class
and worker-thread classes. The scheduler creates one worker for each hardware thread during
intialization. When the scheduler is invoked to perform work, it is handed a DKUPiece and
calls the divider on that piece, telling it to make the same number of pieces as the number of
worker threads. The scheduler then hands the pieces to the worker threads. The worker
threads hand the completed pieces back, at which point the scheduler calls the undivider on the
parent of the piece until all pieces are complete.

The specializer script inserts the number of hardware threads into the Scheduler class before
swapping the specialized scheduler in place of the original one. This simple mechanism, swap-
ping directories, to perform specialization is shown, in the results section, to be effective.

2.4 DKU Infrastructure

Automated
Developer Infrastructure Request End-User

¢ application

Specialized
Executable

Back-end
specializer

Parallel
Hardware

Front-end
compiler

Source
bundle

Figure 4. Tool flow of an application

The tool flow of an application is depicted in Fig 4. It shows the application developer using
the front end compiler to create a source bundle; this feedsthe automated infrastructure that
specializes the source; this sends the appropriate executable to the hardware of a user who
requests an app.

The DKU pattern relies upon infrastructure to perform specialization. The DKU pattern
was designed to work this way, in tandem with automated specialization, so it provides the
semantic information that advanced specialization and scheduling needs. It also is designed to
make automated specialization convenient.

The infrastructure’s purpose is performance portability. The DKU pattern itself performs
no actions, and its semantics are non-functional; they are performance-related semantics. Thus,
the DKU pattern has no value without the infrastructure that takes advantage of what the pat-
tern offers.

Performance portability means specializing a single source to multiple hardware platforms.
This, of course, requires hardware knowledge. The three situations in which hardware knowl-
edge is present are:

1. during distribution to the end-user;
2. during installation by an end-user;
3. during the run of the program.

All three situations are good candidates for places to perform specialization. We have chosen,
for our proof of concept, to implement the first choice, with a web-based infrastructure.

2.5 Implementation

Our proof-of-concept implementation includes a matrix multiply program written, in Java,
according to the DKU pattern, as well as web-based infrastructure. The infrastructure is a web-
site[8] that receives a source tar ball, specializes it, then distibutes .jar executables.

10 SECTION 3

The matrix multiply program follows the DKU pattern for Java, which stipulates a structure
for the source directory tree. In this structure, the application developer places all DKU infras-
tructure related classes in a single directory, named “DKU”. Hence the DKUPiece interface and
Scheduler class files are placed in this directory. This is a source-code requirement that our
implementation relies upon.

The web infrastructure has a web server and many scripts. One set of scripts receive source
and specialize it, a separate script distributes the resulting specialized executables. The special-
ization is performed by a set of scripts with one script for each hardware platform. Each spe-
cialization script comes with a DKU directory that contains a Scheduler class and helper classes
that are written specifically for one hardware platform.

The Receiver script, upon receipt of new source, calls all the specialization scripts. Each
specialization script swaps its custom DKU directory for the original one, then calls the Java
compiler. This is the essential step that modifies the behavior of the code. The .jar resulting
from compilation is handed back to the receiving script, which moves it to a staging area and
adds information about it to a “database” text file. The information will be used by the Dis-
tribute script and includes the program name, the .jar file name plus path and which hardware
platform the .jar file is a specialization for. This completes the receive and specialize process.

Meanwhile, clients request programs they want to install and run. Each request identifies
the hardware platform of the client and the desired program’s name. The Distribute script in
the web infrastructure is invoked when the server receives such a request. The script looks in
the text database file to find the appropriate .jar file. It uses the .jar name and path info to get
the .jar file, then sends it to the client.

3 Experiments

We evaluate the DKU pattern in unison with its web infrastructure, which performs automatic
specialization. The evaluation is performed on the Matrix Multiply algorithm, for which a
single high performance DKU version is written in Java 1.6. This one program is then automat-
ically specialized, using the web infrastructure, to 2 versions, a serial version and an 8 threaded
version that uses Java 1.6’s (relatively) high performance concurrency constructs.

Both versions are run on an 8 hardware thread machine containing 2 quad core Xeon E5345
processors at 2.33GHz, and on a single hardware thread Centrino processor at 1.5GHz. Timing
is collected via Java’s nano-second precision timer plus printf.

To show that the automated specialization successfully tunes parallelism to hardware char-
acteristics, we run our DKU-ized Matrix Multiply program, in Java, on two different machines.
One has a single hardware thread, the other 8 hardware threads. We run on a selection of
matrix sizes, and plot the resulting running time and estimate the time lost due to parallelism
overhead. The overhead is spent inside the JVM and OS’s implementations of threads, commu-
nication primitives, and synchronization.

The overhead of using the DKU pattern is not reported, because it is too small to accurately
measure. The DKU pattern adds only a single extra method-call over a non-DKU version,
when specialized to a single threaded processor. This extra call happens when the single-thread
scheduler is called, which does nothing except in-turn call the kernel. It calls the kernel on the
entire input data-structure, so no division or undivision is performed, so the overhead is just the
unneeded call to the scheduler. On the system we have available for testing, the overhead of
this method relay is too small to separate from noise.

What we do measure is the effectiveness of our specializations. Because the DKU pattern
only makes semantic information available, it has no intrinsic performance. A specializing back-
end compiler must be written that uses the semantic information. It is the performance of this
specialization that is being measured. In essence, the DKU pattern has less structure than an
extension to a language would impose, being merely an organization principle that makes
semantic information available. It is the effectiveness of using the semantic information that
the tests measure.

EXPERIMENTS 11

3.1 Results

Number of Thds 9x9 81 x 81 162 x 162 | 324 x 324 | 648 x 648 | 1296 x 1296

Specialized to t in msec | t in msec | t in msec | tin msec | t in msec t in msec
1 Thread 0.28 28 31 291 2,270 19,100
8 Thread 14 35 16 38 275 2,400

Table 1. To show that the specialization works, on an 8 hardware-thread machine, this table shows the
running time for several sizes of matrix. Two different specializations of the same Matrix Multiply source
are run. Shows the minimum time, chosen from among ten runs.

The results on the eight hardware-thread machine, seen in Table 1, show that on large
matrices, the version specialized to eight threads performed 7.9 times faster than the version
specialized to a single thread. This indicates the success of the automatic specialization scheme.

Number of Thds 9x9 81 x 81 162 x 162 | 324 x 324 | 648 x 648 | 1296 x 1296
Specialized to t in msec | tin msec | tin msec | tin msec | t in msec t in msec
1 Thread 0.11 8.7 56 447 3,450 30,700

8 Thread 3.7 57 102 403 3,860 31,100

Table 2. To show that specialization has value, and to estimate thread overhead, on a single hardware
thread machine, this table shows the total running-time on two specializations of the Matrix Multiply
program. Results are given across several matrix sizes, for a specialization to a single thread and a spe-
cialization to eight threads. Shows the minimum time, chosen from among ten runs.

The results on the single hardware thread machine, seen in Table 2, show that the eight
thread version is now slower (with one anomaly). The slowdown is due to the OS’s thread
scheduler overhead and the JVM’s synchronization primitive overhead. There may also be
memory hierarchy effects at work.

The net effect is that if one simply wrote an eight threaded version, it would run slower on a
single hardware-thread machine. Conversely, if one simply wrote a single threaded version it
would run slower on an eight threaded machine. It is therefore valuable to have the automated
infrastructure that generates both versions and sends the single threaded version to the single
hardware-thread machine and sends the eight threaded version to the eight hardware-thread
machine.

3.2 Proposed OS modification for higher performance

The DKU pattern can potentially save the time lost to synchronization. The large discrepancies
on small matrix sizes on both machines are due to thread overhead. Most of this time is lost in
the implementation of the JVM and OS.

DKUs semantics enable replacing the OS’s thread scheduler with a more efficient scheduler.
The DKU pattern encodes independent, atomic, units of computation. FEach of these atomic
units of computation can be scheduled directly onto a hardware thread and allowed to run to
completion. Following this notion, the OS’s “blind” thread scheduler would be replaced by a
very simple DKU-aware scheduler.

The DKU scheduler would assign atomic units of computation directly to hardware threads.
To start a computation, it would load one register with a pointer to a piece-struc then jump to
the Kernel’s code (rather than a call instruction). When the computation finished the Kernel
would jump directly to the scheduler. The scheduler would already have the pointer to the
piece-struc, and so it has all the information the Undivider needs. Hence, no register saves nor
restores would be performed, no stack manipulations, and most importantly, no synchroniza-
tions would be performed. The times seen in Tables 1 and 2 suggest how much improvement
could be realized by using this scheme over using the “blind” thread scheduler in the OS.

If specialization were placed into the OS, then such a DKU aware scheduler could be used in
place of a blind thread scheduler. The OS would have to add a command to explicitly perform
installation of new programs. The installation command would call the specializer, which would
instrument the Kernel to end with a jump to the scheduler. The scheduler would be a perma-
nent fixture of the OS kernel.

12 SECTION 5

The DKU scheduler, being inside the OS, would take direct control of hardware threads.
This would eliminate the blind thread-scheduler’s needless-for-DKU decision making, eliminate
register saves and restores between Kernel calls, eliminate stack manipulations, and eliminate
synchronization operations, all of which are unneeded for DKU programs. The result would be
reduced running time on a given matrix size and a much smaller break-even size.

4 Conclusion

We have proposed a pattern that is embedded into any language, to express data parallelism.
The pattern enables an automated tool that specializes source code to multiple hardware plat-
forms. A given specializer works for all source code that follows the pattern. Source that fol-
lows the pattern works with all specializers. When new hardware is introduced a specializer is
written for it, and all of the "dusty decks" are run through the new specializer, making all the
pre-existing sources run high performance on the new hardware.

The source is written by application people, while the specializers are written by hardware
people. This cleanly separates application knowlege from hardware knowlege and helps running
a single source to high levels of performance on all hardware that has a specializer.

In future work we will attempt to implement a specializer for MPSoC chips with distributed
memory. We plan to implement on an MPSoC from ST that is targeted in the OMP project.
This specializer will implement its own hardware level thread scheduler, which will take control
away from the OS’s thread implementation.

We also plan to add a running-time estimator, in which the application programmer or pro-
filing tools indicate the running-time complexity of the kernel. Executables will use this at run-
time to decide the number of pieces to divide data into, thus adjusting for break-even data size.

Finally, we plan to introduce custom syntax embedded within comments to help when spe-
cializing to distributed memory hardware, and to aid in collapsing data-structures down to flat
arrays. This will be especially helpful for object oriented programs, which inherently use exten-
sive indirection. The syntax should allow the elimination of many of the pointers, while the
code is still written in a natural object oriented way.

5 References

[1] CILK homepage. http://supertech.csail.mit.edu/cilk.
[2] Titanium homepage. http://titanium.cs.berkeley.edu.

[3] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Allan Kielstra, Kemal
Ebcioglu, Christoph von Praun, and Vivek Sarkar. X10: an object-oriented approach to non-uniform
cluster computing. In OOPSLA ’05: Proceedings of the 20th annual ACM SIGPLAN conference on Object
oriented programming, systems, languages, and applications, pages 519-538. ACM, 2005.

[4] M. Cole. Algorithmic skeletons: Structured management of parallel computation. Pitman, 1989.

[5] J. Darlington, A. J. Field, P. G. Harrison, P. H. J. Kelly, D. W. N. Sharp, and Q. Wu. Parallel pro-
gramming using skeleton functions. pages 146-160. Springer-Verlag, 1993.

[6] Kayvon Fatahalian, Daniel Reiter Horn, Timothy J. Knight, Larkhoon Leem, Mike Houston, Ji Young
Park, Mattan Erez, Manman Ren, Alex Aiken, William J. Dally, and Pat Hanrahan. Sequoia: program-
ming the memory hierarchy. In SC ’06: Proceedings of the 2006 ACM/IEEE conference on Supercom-
puting, page 83. ACM, 2006.

[7] Dominique Ginhac, Jocelyn Serot, and Jean Pierre Derutin. Fast prototyping of image processing applica-
tions using functional skeletons on a mimd-dm architecture. In In IAPR Workshop on Machine Vision
and Applications, pages 468—471, 1998.

[8] Sean Halle and Albert Cohen. DKU infrastructure server. http://omp.musictwodotoh.com.

[9] Ken Kennedy and John R. Allen. Optimizing compilers for modern architectures: a dependence-based
approach. Morgan Kaufmann Publishers Inc., 2002.

[10] P. Palatin, Y. Lhuillier, and O. Temam. Capsule: Hardware-assisted parallel execution of component-
based programs. In In Proceedings of the 39th Annual International Symposium on Microarchitecture,
pages 247-258, 2006.

REFERENCES 13

[11] R. Stephens. A survey of stream processing. Tech. Report, CSRG95-11, Surrey U., 1995.

[12] Marco Cornero, Roberto Costa, Ricardo Fernandez Pascual, Andrea C. Ornstein and Erven Rohou. An
experimental environment validating the suitability of CLI as an effective deployment format for embedded
systems. International Conference on High Performance and Embedded Architectures and Compilers
(HiPEAC’08), 2008 pp. 130-144.

[13] Maik Nijhuis, Herbert Bos, Henri Bal, and Cédric Augonnet. Mapping and synchronizing streaming
applications on Cell processors. In International Conference on High Performance Embedded Architectures
& Compilers, Paphos, Cyprus, January 2009.

